Client Prioritization for Route Optimization at Pascual

Ignacio Amigó, Sebastian De Wind, Catalina Gaitán, Ignacio Salcedo, Laura Silva and Adrian Soto

Pascual faces the challenge of balancing service quality with operational efficiency across a nationwide commercial network. Through the analysis of over one million transactional records, client segments with low/high ticket and efficiency were identified using segmend-based strategy and K-Means clustering. This approach was developed to recommend tailored visit reductions, supported by business rules and an LLM-powered assistant for scalable, explainable deployment. The solution is projected to generate over €521,000 in annual savings while preserving high-value client relationships.

1. Business Context

Clients 41,950

Cities 21

Median Ticket € 86.43

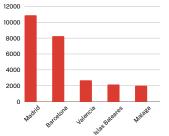


Figure 2. Top 5 Cities by Client Count

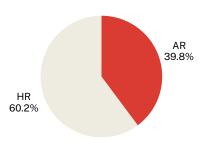


Figure 1. Distribution by Channel

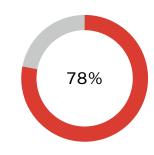


Figure 3. Contribution of Total Income vs Operational Cost

2. Methodology

A structured analytical framework was applied to optimize client visit frequencies. The process involved data cleaning and enrichment, followed by client segmentation, cost modeling, and prioritization based on business rules. At the core of the analysis was a classification of clients into four strategic quadrants, derived from two key dimensions: median ticket size and delivery efficiency.

- Median Ticket: Whether the client's typical order value exceeds the € 80
- Efficiency: Whether the client generates at least one order per promoter visit.

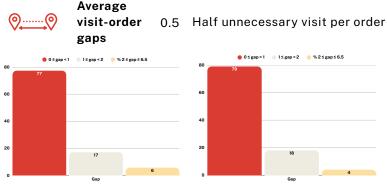


Figure 4. Client Segmentation based on median ticket size and efficiency

3. Development

The final solution applied a segment-based strategy, combining the initial efficiency-ticket quadrant framework with K-Means clustering to optimize visit frequency within inefficient client segments. Behavioral clustering of High-Ticket Inefficient and Low-Ticket Inefficient clients allowed targeted, realistic visit reductions while preserving service.

Each cluster was assigned a target visit-order gap, and the difference from actual performance was used to determine monthly visit reductions, using soft rounding to ensure operational feasibility.

Specific visit policy recommendations were defined for each cluster, as

targeted visit-to-order gap thresholds by cluster, balancing efficiency gains with potential commercial risks.

Figure 7. Proposed Strategy by Cluster Behaivor

within categories **High Ticket Inefficient** Silhouette: 0.552 Client is strategic, high income Clients visit twice as much as summarized in Figure 7. recommendations Small median orders (€57) Low Ticket Inefficient Silhouette: 0,502 Leaving a small buffer but cutting the bulk of extra visits

4. Results

3870 visits reduced


€521,000 in annual savings

Estimated 7% reduction in total promoter visit costs of inneficient clients

Figure 8. Visit Reduction by Segment

Commercial Planning **Assistant**

5. Conclusion

Target the Main Reductions

> Top 25–35% of accounts captures around 80% of potential savings.

Action Plan

Pilot & Evaluate Recommendations

> Launch a controlled pilot in selected regions or client segments. Target the top 25-35% of inefficient clients to capture 80% of savings.

Focus Approach with High **Impact**

> Focused approach captures **€521,000** in annual savings with minimal disruption.

Operationable & Scalable

> Client segmentation and clustering enable targeted, scalable strategies.

Incorporate seasonality, productlevel data, or client lifecycle signals into modeling.

Scale to New Channels & **Automate**

Extend methodology to other Pascual channels

