e

UNIVERSITY

COMPUTER PROGRAMMING 2

Bachelor in Computer Science and Artificial Intelligence
BCSAI SEP-2024 CP2-CSAL3.M.A

Area Computer Science and Al
Number of sessions: 30
Academic year: 24-25
Degree course: THIRD
Number of credits: 6.0
Semester: 1°
Category: COMPULSORY
Language: English

Professor: RAUL PEREZ PELAEZ
E-mail: rperezp@faculty.ie.edu

Raul P. Pelaez did his PhD on high-performance simulation of complex fluids at
the Universidad Autonoma de Madrid in Rafael Delgado-Buscalioni’s group, in
close collaboration with Aleksandard Donev’s group (Courant Institue, New
York University). During this time he developed Universally Adaptable
Multiscale Molecular Dynamics (UAMMD), a multipurpose, modular GPU
software package for nano and microhydrodynamics of suspensions
(uammd.readthedocs.io).

He is currently a Postdoctoral researcher at the Universitat Pompeu Fabra
(Barcelona). RPP acts as a machine learning research director at OpenMM, a
popular high-performance, customizable molecular mechanics software
package. In this role, he researches high-performance approaches for machine
learning-enabled forcefields (neural network potentials) for biomolecular
simulations.

Office Hours
Office hours will be on request. Please contact at:

rperezp@faculty.ie.edu

SUBJECT DESCRIPTION

C++ remains crucial in performance-critical domains such as game
development, systems programming, high-frequency trading, and embedded
systems, where its low-level control, efficient memory management, and ability
to interface directly with hardware make it indispensable for creating fast,
resource-efficient applications.

1
Edited by Documentation
02th September 2024


mailto:rperezp@faculty.ie.edu

This comprehensive C++ course offers an in-depth exploration of modern C++
programming. The curriculum covers fundamental concepts, advanced
features, and best practices in software engineering. Students will progress
from basic syntax and object-oriented programming principles to advanced
topics such as templates, STL, and memory management. The course
emphasizes practical skills through hands-on coding and good software
engineering practices using real-world tools and techniques for debugging,
testing, version control, documentation and build systems. By the end of the
course, students will have developed a strong foundation in C++ programming,
enabling them to design and implement efficient, robust software solutions. The
course includes continuous individual presentations (small homework
examples) and a group project, providing opportunities to apply learned
concepts to real-world scenarios.

LEARNING OBJECTIVES

By the end of this course students should be able to:
1. Understand the basic programming features and syntax of the C++ language.
2. Understand the basic memory concepts in C++ (values, pointers, references).
3. Understand and apply object-oriented programming principles in C++.
4. Implement fundamental software engineering practices, including version control and unit
testing.

(62

. Manage memory effectively in C++ programs.
6. Create programs in C++ that are correct, robust and capable of being understood,
reused and modified by others.

TEACHING METHODOLOGY

IE University teaching method is defined by its collaborative, active, and applied nature. Students
actively participate in the whole process to build their knowledge and sharpen their skills.
Professor’'s main role is to lead and guide students to achieve the learning objectives of the course.
This is done by engaging in a diverse range of teaching techniques and different types of learning
activities such as the following:

Learning Activity Weighting Estimated time a
student should
dedicate to prepare for
and participate in

Lectures 40.0 % 60.0 hours

Group work 26.7 % 40.0 hours

Individual studying 33.3% 50.0 hours

TOTAL 100.0 % 150.0 hours
Al POLICY

In this course, the use of generative artificial intelligence (GenAl) is encouraged, with the goal of
developing an informed critical perspective on potential uses and generated outputs.

However, be aware of the limits of GenAl in its current state of development:
- If you provide minimum effort prompts, you will get low quality results. You will need to refine
your prompts to get good outcomes. This will take work.

2
02th September 2024



- Don't take ChatGPT's or any GenAl's output at face value. Assume it is wrong unless you
either know the answer or can cross-check it with another source. You are responsible for any
errors or omissions. You will be able to validate the outputs of GenAl for topics you understand.

- LLMs are a good productivity/search tool when you are an expert on the field and can thus be
critical of its output. Be aware of this when using it for learning.

- Al is a tool, but one that you need to acknowledge using. Failure to do so is in violation of
academic honesty policies. Acknowledging the use of Al will not impact your grade.

- Coding LLMs (Github copilot) are really good at writing boiler-plate code (which C++ has lots
of). This is an incredible time-saver when one understands the produced code. Be aware and
critical of the impact generating this kind of code has for your learning process.

PROGRAM

The following description of the material covered is tentative. An attempt will be made to cover all
listed topics and to include other advanced topics that will help the student throughout their career
in computer science. However, the pace of the classes will depend on group performance, which
may introduce some variations in the syllabus.

SESSION 1 (LIVE IN-PERSON)

Course Overview and Introduction to C++

- Course objectives and structure

- History and evolution of C++, C++ Standards/dialects, differences with C.
- Why/where C++ is important

- Comparison with other programming languages

- Overview of the C++ Standard Library and other language resources

SESSION 2 (LIVE IN-PERSON)

Quiz session on Basic Programming Syntax in C
Going over examples with increasing complexity, covering:

- Variables, data types, and basic operators. Type deduction (auto)
- Control structures: if, else, switch, loops (for, while, do-while)

- Functions: declaration, definition, and scope

- Basic input/output operations: cin, cout

- First programs, godbolt.

SESSION 3 (LIVE IN-PERSON)

Version Control with git and Github
Git, github, pull requests, documentation.

SESSION 4 (LIVE IN-PERSON)

Unit Testing
- Writing unit tests with Google Test

3
02th September 2024



- Best practices for testing
- Test-driven development

SESSION 5 (LIVE IN-PERSON)

Namespaces, Inline Functions, Preprocessor, Directives and Macros
- Namespaces, scope.

- Inline functions and their advantages

- Introduction to the preprocessor,

- Common preprocessor directives: #include, #define, #if, #endif

- Macros and their applications, conditional compilation

SESSION 6 (LIVE IN-PERSON)

Memory model, containers, pointers and references
- Memory, addresses and pointers

- Arrays, access to elements

- References, alternatives to pointer use

SESSION 7 (LIVE IN-PERSON)

Debugging Techniques

- Debugging tools and techniques
- Using gdb for debugging

- Common debugging scenarios

SESSION 8 (LIVE IN-PERSON)

Software Delivery
- Compilation strategies: make, CMake
- Code Packaging: pip, conda, github releases...

SESSION 9 (LIVE IN-PERSON)

Classes and Objects

- Defining classes and creating objects

- Access specifiers: public, private, protected
- Member functions and data members

- Nested classes

- The "this" pointer

SIS

- The “const”,“static” and “friend” keywords

SESSION 10 (LIVE IN-PERSON)

Constructors and Destructors, other special methods
- Purpose of constructors and destructors
- Types of constructors: default, parameterized, copy

4
02th September 2024



- Rules of 3and 5
- Destructor implementation and usage
- Operators.

SESSION 11 (LIVE IN-PERSON)

Inheritance & Polymorphism

- Base and derived classes

- Types of inheritance: single, multiple, multilevel, hierarchical

- Overriding base class methods

- Constructor and destructor invocation order

- Function overloadingVirtual functions and runtime polymorphism

- Pure virtual functions and abstract classes

- Polymorphic behavior with pointers and references, static_cast and dynamic_cast
- User Defined Type conversion

- Runtime casting

SESSION 12 (LIVE IN-PERSON)

Good practices for Object Oriented code

- Principles of OO design

- Common pitfalls: Classitis, over-application of design patterns.
- The expression problem

- Deep and shallow modules

- Design it thrice

- Interface and implementation inheritance

SESSION 13 (LIVE IN-PERSON)

Advance memory handling

- Dynamic memory allocation using new and delete
- Memory leaks and how to avoid them

- Smart pointers: unique_ptr, shared_ptr, weak_ptr
- std::vector.

- RAII (Resource Acquisition Is Initialization)

SESSION 14 (LIVE IN-PERSON)

Files

- File stream classes: ifstream, ofstream, fstream
- Opening and closing files

- Reading from and writing to files

- Text vs. binary mode

- File pointers and seeking

- Error handling in file /0

5
02th September 2024



SESSION 15 (LIVE IN-PERSON)
Function Templates

- Template syntax and definition

- Using function templates

- Template specialization

SESSION 16 (LIVE IN-PERSON)
Class Templates

- Template class definition

- Instantiation of template classes

- Non-type template parameters

SESSION 17 (LIVE IN-PERSON)

STL Containers

- Overview of STL

- Sequential containers: vector, list, deque

- Associative containers: set, map, multiset, multimap
- Container adapters: stack, queue, priority_queue

SESSION 18 (LIVE IN-PERSON)
STL lterators and Algorithms

- Types of iterators: input, output, forward, bidirectional, random access
- Common iterator functions

- STL algorithms: sorting, searching, and modifying sequences
- Lambda expressions with STL algorithms

SESSION 19 (LIVE IN-PERSON)

Recovering from errors

- Exception handling model: try, catch, throw

- Standard exceptions and creating custom exceptions

- Stack unwinding and rethrowing exceptions
- Writing exception-safe code

SESSION 20 (LIVE IN-PERSON)
Technicalities
- Enumerations, unions...

- Order of evaluation, comma-operator
- Declarations and definitions

- Other keywords (extern, volatile)

6
02th September 2024



SESSION 21 (LIVE IN-PERSON)

What we learned so far
- Recap of the course until this moment
- Group Assignment Exploration (team members + topic)

SESSION 22 (LIVE IN-PERSON)

Midterm - Intermediate Test

SESSION 23 (LIVE IN-PERSON)

Profiling and identifying bottlenecks
- Code optimization: inlining, loop unrolling
- Memory optimization: cache optimization, avoiding fragmentation

SESSION 24 (LIVE IN-PERSON)

Parallel computing primer

- thb

- openmp

- std::async and std::future

- GPU computing with thrust

SESSION 25 (LIVE IN-PERSON)
Recap, Group Assignment Support

SESSION 26 (LIVE IN-PERSON)
Recap, Group Assignment Support

SESSION 27 (LIVE IN-PERSON)

Recap, Group Assignment Support

SESSION 28 (LIVE IN-PERSON)

Group Assignment presentations

SESSION 29 (LIVE IN-PERSON)

Recap + Problems

SESSION 30 (LIVE IN-PERSON)

Final Exam

EVALUATION CRITERIA

7
02th September 2024



criteria percentage Learning Comments
Objectives

Final Exam 25%

Individual 20 % Homework

presentations completion and
short
presentations of it

Group Project 20 % Includes a
presentation

Class Participation [10 %

Intermediate tests [25 %

RE-SIT / RE-TAKE POLICY

Each student has four chances to pass any given course distributed over two consecutive
academic years: ordinary call exams and extraordinary call exams (re-sits) in June/July. Students
who do not comply with the 80% attendance rule during the semester will fail both calls for this
Academic Year (ordinary and extraordinary) and have to re-take the course (i.e., re-enroll) in the
next Academic Year. Evaluation criteria: Students failing the course in the ordinary call (during the
semester) will have to re-sit the exam in June / July (except those not complying with the
attendance rule, who will not have that opportunity and must directly re-enroll in the course on the
next Academic Year). The extraordinary call exams in June / July (re-sits) require your physical
presence at the campus you are enrolled in (Segovia or Madrid). There is no possibility to change
the date, location or format of any exam, under any circumstances. Dates and location of the June /
July re-sit exams will be posted in advance. Please consider this when planning your summer. The
June / July re-sit exam will consist of a comprehensive exam. Your final grade for the course will
depend on your performance in this exam only; continuous evaluation over the semester will not be
taken into consideration. Students will have to achieve the minimum passing grade of 5 and can
obtain a maximum grade of 8.0 (out of 10.0) —i.e., “notable” in the re-sit exam.

Retakers: Students who failed the subject on a previous Academic Year and are now re-enrolled as
re-takers in a course will be needed to check the syllabus of the assigned professor, as well as
contact the professor individually, regarding the specific evaluation criteria for them as retakers in
the course during that semester (ordinary call of that Academic Year). The maximum grade that
may be obtained in the retake exam (3rd call) is 10.0. After the professor grades ordinary and
extraordinary call exams, you will have the possibility to attend a review session for that exam and
course grade. Please be available to attend the session in order to clarify any concerns you might
have regarding your exam. Your professor will inform you about the time and place of the review
session. Any grade appeals require that the student attended the review session prior to appealing.
Students failing more than 18 ECTS credits after the June / July re-sits will be asked to leave the
Program. Please, make sure to prepare yourself well for the exams in order to pass your failed
subjects. In case you decide to skip the opportunity to re-sit for an exam during the June/July
extraordinary call, you will need to enroll in that course again for the next Academic Year as a re-
taker and pay the corresponding extra cost. As you know, students have a total of four allowed calls
to pass a given subject or course, in order to remain in the program

BIBLIOGRAPHY

Recommended

- Bjarne Stroustrup. (2024). Programming: Principles and Practice Using C++.

third edition.. ISBN 9780138308681 (Digital)
https://stroustrup.com/programming.html

- Bjarne Stroustrup. (2022). A Tour of C++. third edition. ISBN 0136816487

(Digital)

8
02th September 2024



https://stroustrup.com/tour3.html

BEHAVIOR RULES

Please, check the University's Code of Conduct here. The Program Director may
provide further indications.

ATTENDANCE POLICY

Please, check the University's Attendance Policy here. The Program Director may
provide further indications.

ETHICAL POLICY

Please, check the University's Ethics Code here. The Program Director may
provide further indications.

9
02th September 2024


https://docs.google.com/document/d/10t0jdCWH_Sqn4cWmOhb-526v4p3mzMgR/edit?usp=share_link&ouid=118003678892078292123&rtpof=true&sd=true
https://docs.google.com/document/d/1-rnRS5nYFG_RjfNNl8ur8xxb8JFT8FDalzPSNhahMpk/edit
https://docs.ie.edu/university/NEW-ethics-code.pdf

