
COMPUTER PROGRAMMING 2

Office Hours

SUBJECT DESCRIPTION

Bachelor in Computer Science and Artificial Intelligence
BCSAI SEP-2024 CP2-CSAI.3.M.A

Area Computer Science and AI
Number of sessions: 30
Academic year: 24-25
Degree course: THIRD
Number of credits: 6.0

Semester: 1º
Category: COMPULSORY

Language: English

Professor: RAÚL PÉREZ PELAEZ

E-mail: rperezp@faculty.ie.edu

Raul P. Pelaez did his PhD on high-performance simulation of complex fluids at
the Universidad Autonoma de Madrid in Rafael Delgado-Buscalioni’s group, in
close collaboration with Aleksandard Donev’s group (Courant Institue, New
York University). During this time he developed Universally Adaptable
Multiscale Molecular Dynamics (UAMMD), a multipurpose, modular GPU
software package for nano and microhydrodynamics of suspensions
(uammd.readthedocs.io).

He is currently a Postdoctoral researcher at the Universitat Pompeu Fabra
(Barcelona). RPP acts as a machine learning research director at OpenMM, a
popular high-performance, customizable molecular mechanics software
package. In this role, he researches high-performance approaches for machine
learning-enabled forcefields (neural network potentials) for biomolecular
simulations.

Office hours will be on request. Please contact at:

rperezp@faculty.ie.edu

C++ remains crucial in performance-critical domains such as game
development, systems programming, high-frequency trading, and embedded
systems, where its low-level control, efficient memory management, and ability
to interface directly with hardware make it indispensable for creating fast,
resource-efficient applications.

1
Edited by Documentation

02th September 2024

mailto:rperezp@faculty.ie.edu

1.
2.
3.
4.

5.
6.

-

LEARNING OBJECTIVES

Understand the basic programming features and syntax of the C++ language.

Understand the basic memory concepts in C++ (values, pointers, references).

Understand and apply object-oriented programming principles in C++.

Implement fundamental software engineering practices, including version control and unit

testing.

Manage memory effectively in C++ programs.

Create programs in C++ that are correct, robust and capable of being understood,

reused and modified by others.

TEACHING METHODOLOGY

AI POLICY

If you provide minimum effort prompts, you will get low quality results. You will need to refine

your prompts to get good outcomes. This will take work.

This comprehensive C++ course offers an in-depth exploration of modern C++
programming. The curriculum covers fundamental concepts, advanced
features, and best practices in software engineering. Students will progress
from basic syntax and object-oriented programming principles to advanced
topics such as templates, STL, and memory management. The course
emphasizes practical skills through hands-on coding and good software
engineering practices using real-world tools and techniques for debugging,
testing, version control, documentation and build systems. By the end of the
course, students will have developed a strong foundation in C++ programming,
enabling them to design and implement efficient, robust software solutions. The
course includes continuous individual presentations (small homework
examples) and a group project, providing opportunities to apply learned
concepts to real-world scenarios.

By the end of this course students should be able to:

IE University teaching method is defined by its collaborative, active, and applied nature. Students
actively participate in the whole process to build their knowledge and sharpen their skills.
Professor’s main role is to lead and guide students to achieve the learning objectives of the course.
This is done by engaging in a diverse range of teaching techniques and different types of learning
activities such as the following:

Learning Activity Weighting Estimated time a
student should
dedicate to prepare for
and participate in

Lectures 40.0 % 60.0 hours
Group work 26.7 % 40.0 hours
Individual studying 33.3 % 50.0 hours
TOTAL 100.0 % 150.0 hours

In this course, the use of generative artificial intelligence (GenAI) is encouraged, with the goal of
developing an informed critical perspective on potential uses and generated outputs.

However, be aware of the limits of GenAI in its current state of development:

2
02th September 2024

-

-

-

-

Don't take ChatGPT’s or any GenAI’s output at face value. Assume it is wrong unless you

either know the answer or can cross-check it with another source. You are responsible for any

errors or omissions. You will be able to validate the outputs of GenAI for topics you understand.

LLMs are a good productivity/search tool when you are an expert on the field and can thus be

critical of its output. Be aware of this when using it for learning.

AI is a tool, but one that you need to acknowledge using. Failure to do so is in violation of

academic honesty policies. Acknowledging the use of AI will not impact your grade.

Coding LLMs (Github copilot) are really good at writing boiler-plate code (which C++ has lots

of). This is an incredible time-saver when one understands the produced code. Be aware and

critical of the impact generating this kind of code has for your learning process.

PROGRAM

SESSION 1 (LIVE IN-PERSON)

SESSION 2 (LIVE IN-PERSON)

SESSION 3 (LIVE IN-PERSON)

SESSION 4 (LIVE IN-PERSON)

The following description of the material covered is tentative. An attempt will be made to cover all
listed topics and to include other advanced topics that will help the student throughout their career
in computer science. However, the pace of the classes will depend on group performance, which
may introduce some variations in the syllabus.

Course Overview and Introduction to C++

- Course objectives and structure
- History and evolution of C++, C++ Standards/dialects, differences with C.
- Why/where C++ is important
- Comparison with other programming languages
- Overview of the C++ Standard Library and other language resources

Quiz session on Basic Programming Syntax in C

Going over examples with increasing complexity, covering:

- Variables, data types, and basic operators. Type deduction (auto)
- Control structures: if, else, switch, loops (for, while, do-while)
- Functions: declaration, definition, and scope
- Basic input/output operations: cin, cout
- First programs, godbolt.

Version Control with git and Github

Git, github, pull requests, documentation.

Unit Testing

- Writing unit tests with Google Test

3
02th September 2024

SESSION 5 (LIVE IN-PERSON)

SESSION 6 (LIVE IN-PERSON)

SESSION 7 (LIVE IN-PERSON)

SESSION 8 (LIVE IN-PERSON)

SESSION 9 (LIVE IN-PERSON)

SESSION 10 (LIVE IN-PERSON)

- Best practices for testing

- Test-driven development

Namespaces, Inline Functions, Preprocessor, Directives and Macros

- Namespaces, scope.

- Inline functions and their advantages

- Introduction to the preprocessor,

- Common preprocessor directives: #include, #define, #if, #endif

- Macros and their applications, conditional compilation

Memory model, containers, pointers and references

- Memory, addresses and pointers

- Arrays, access to elements

- References, alternatives to pointer use

Debugging Techniques

- Debugging tools and techniques

- Using gdb for debugging

- Common debugging scenarios

 Software Delivery

- Compilation strategies: make, CMake

- Code Packaging: pip, conda, github releases…

Classes and Objects

- Defining classes and creating objects

- Access specifiers: public, private, protected

- Member functions and data members

- Nested classes

- The "this" pointer

- The “const”,“static” and “friend” keywords

Constructors and Destructors, other special methods

- Purpose of constructors and destructors

- Types of constructors: default, parameterized, copy

4
02th September 2024

SESSION 11 (LIVE IN-PERSON)

SESSION 12 (LIVE IN-PERSON)

SESSION 13 (LIVE IN-PERSON)

SESSION 14 (LIVE IN-PERSON)

- Rules of 3 and 5

- Destructor implementation and usage

- Operators.

Inheritance & Polymorphism

- Base and derived classes

- Types of inheritance: single, multiple, multilevel, hierarchical

- Overriding base class methods

- Constructor and destructor invocation order

- Function overloadingVirtual functions and runtime polymorphism

- Pure virtual functions and abstract classes

- Polymorphic behavior with pointers and references, static_cast and dynamic_cast

- User Defined Type conversion

- Runtime casting

Good practices for Object Oriented code

- Principles of OO design

- Common pitfalls: Classitis, over-application of design patterns.

- The expression problem

- Deep and shallow modules

- Design it thrice

- Interface and implementation inheritance

Advance memory handling

- Dynamic memory allocation using new and delete

- Memory leaks and how to avoid them

- Smart pointers: unique_ptr, shared_ptr, weak_ptr

- std::vector.

- RAII (Resource Acquisition Is Initialization)

Files

- File stream classes: ifstream, ofstream, fstream

- Opening and closing files

- Reading from and writing to files

- Text vs. binary mode

- File pointers and seeking

- Error handling in file I/O

5
02th September 2024

SESSION 15 (LIVE IN-PERSON)

SESSION 16 (LIVE IN-PERSON)

SESSION 17 (LIVE IN-PERSON)

SESSION 18 (LIVE IN-PERSON)

SESSION 19 (LIVE IN-PERSON)

SESSION 20 (LIVE IN-PERSON)

Function Templates

- Template syntax and definition

- Using function templates

- Template specialization

 Class Templates

- Template class definition

- Instantiation of template classes

- Non-type template parameters

STL Containers

- Overview of STL

- Sequential containers: vector, list, deque

- Associative containers: set, map, multiset, multimap

- Container adapters: stack, queue, priority_queue

STL Iterators and Algorithms

- Types of iterators: input, output, forward, bidirectional, random access

- Common iterator functions

- STL algorithms: sorting, searching, and modifying sequences

- Lambda expressions with STL algorithms

Recovering from errors

- Exception handling model: try, catch, throw

- Standard exceptions and creating custom exceptions

- Stack unwinding and rethrowing exceptions

- Writing exception-safe code

Technicalities

- Enumerations, unions…

- Order of evaluation, comma-operator

- Declarations and definitions

- Other keywords (extern, volatile)

6
02th September 2024

SESSION 21 (LIVE IN-PERSON)

SESSION 22 (LIVE IN-PERSON)

SESSION 23 (LIVE IN-PERSON)

SESSION 24 (LIVE IN-PERSON)

SESSION 25 (LIVE IN-PERSON)

SESSION 26 (LIVE IN-PERSON)

SESSION 27 (LIVE IN-PERSON)

SESSION 28 (LIVE IN-PERSON)

SESSION 29 (LIVE IN-PERSON)

SESSION 30 (LIVE IN-PERSON)

EVALUATION CRITERIA

What we learned so far

- Recap of the course until this moment

- Group Assignment Exploration (team members + topic)

 Midterm - Intermediate Test

Profiling and identifying bottlenecks

- Code optimization: inlining, loop unrolling

- Memory optimization: cache optimization, avoiding fragmentation

Parallel computing primer

- tbb

- openmp

- std::async and std::future

- GPU computing with thrust

Recap, Group Assignment Support

Recap, Group Assignment Support

Recap, Group Assignment Support

Group Assignment presentations

Recap + Problems

Final Exam

7
02th September 2024

RE-SIT / RE-TAKE POLICY

BIBLIOGRAPHY

Recommended

 - Bjarne Stroustrup. (2024). Programming: Principles and Practice Using C++.

third edition.. ISBN 9780138308681 (Digital)

 https://stroustrup.com/programming.html

 - Bjarne Stroustrup. (2022). A Tour of C++. third edition. ISBN 0136816487

(Digital)

criteria percentage Learning
Objectives

Comments

Final Exam 25 %
Individual
presentations

20 % Homework
completion and
short
presentations of it

Group Project 20 % Includes a
presentation

Class Participation 10 %
Intermediate tests 25 %

Each student has four chances to pass any given course distributed over two consecutive
academic years: ordinary call exams and extraordinary call exams (re-sits) in June/July. Students
who do not comply with the 80% attendance rule during the semester will fail both calls for this
Academic Year (ordinary and extraordinary) and have to re-take the course (i.e., re-enroll) in the
next Academic Year. Evaluation criteria: Students failing the course in the ordinary call (during the
semester) will have to re-sit the exam in June / July (except those not complying with the
attendance rule, who will not have that opportunity and must directly re-enroll in the course on the
next Academic Year). The extraordinary call exams in June / July (re-sits) require your physical
presence at the campus you are enrolled in (Segovia or Madrid). There is no possibility to change
the date, location or format of any exam, under any circumstances. Dates and location of the June /
July re-sit exams will be posted in advance. Please consider this when planning your summer. The
June / July re-sit exam will consist of a comprehensive exam. Your final grade for the course will
depend on your performance in this exam only; continuous evaluation over the semester will not be
taken into consideration. Students will have to achieve the minimum passing grade of 5 and can
obtain a maximum grade of 8.0 (out of 10.0) – i.e., “notable” in the re-sit exam.

Retakers: Students who failed the subject on a previous Academic Year and are now re-enrolled as
re-takers in a course will be needed to check the syllabus of the assigned professor, as well as
contact the professor individually, regarding the specific evaluation criteria for them as retakers in
the course during that semester (ordinary call of that Academic Year). The maximum grade that
may be obtained in the retake exam (3rd call) is 10.0. After the professor grades ordinary and
extraordinary call exams, you will have the possibility to attend a review session for that exam and
course grade. Please be available to attend the session in order to clarify any concerns you might
have regarding your exam. Your professor will inform you about the time and place of the review
session. Any grade appeals require that the student attended the review session prior to appealing.
Students failing more than 18 ECTS credits after the June / July re-sits will be asked to leave the
Program. Please, make sure to prepare yourself well for the exams in order to pass your failed
subjects. In case you decide to skip the opportunity to re-sit for an exam during the June/July
extraordinary call, you will need to enroll in that course again for the next Academic Year as a re-
taker and pay the corresponding extra cost. As you know, students have a total of four allowed calls
to pass a given subject or course, in order to remain in the program

8
02th September 2024

 https://stroustrup.com/tour3.html

BEHAVIOR RULES

ATTENDANCE POLICY

ETHICAL POLICY

Please, check the University's Code of Conduct here. The Program Director may
provide further indications.

Please, check the University's Attendance Policy here. The Program Director may
provide further indications.

Please, check the University's Ethics Code here. The Program Director may
provide further indications.

9
02th September 2024

https://docs.google.com/document/d/10t0jdCWH_Sqn4cWmOhb-526v4p3mzMgR/edit?usp=share_link&ouid=118003678892078292123&rtpof=true&sd=true
https://docs.google.com/document/d/1-rnRS5nYFG_RjfNNl8ur8xxb8JFT8FDalzPSNhahMpk/edit
https://docs.ie.edu/university/NEW-ethics-code.pdf

